25/04/2024 by Woodea 0 Comments

New Energy Efficiency Directive in the EU and its impact on construction

In an effort to combat climate change, the European Union has launched ambitious energy efficiency regulations aimed at promoting sustainability in the construction sector, which we will analyze its impact.

26/03/2024 by Woodea 0 Comments

Woodea presents the advantages of Design & Build with Product Platform at Rebuild

Rebuild consolidates its position as the leading forum for the exchange of innovative ideas and the presentation of advanced building solutions, reflecting a strong commitment to progress and sustainability in the sector.

23/02/2024 by Woodea 0 Comments

Reducing the Carbon Footprint in Construction: A Global Challenge

Sustainable construction bursts onto the current construction scene as a critical need to mitigate the environmental impact of one of the most resource-consuming and waste-producing sectors worldwide.

24/01/2024 by Woodea 0 Comments

Lean Project Delivery System: Optimization of Construction Projects

In the world of construction, where projects are characterized by their complexity and tight deadlines, efficiency and process optimization have become crucial factors for success. It is in this context that the innovative Lean Project Delivery System (LPDS) approach emerges, a methodology that seeks to transform the way projects are managed, optimizing resources, minimizing waste and maximizing client satisfaction.

21/11/2023 by Woodea 0 Comments

Component-Based Construction: Juan Carlos Cabrero’s Vision

Discover Juan Carlos Cabrero’s vision on the current state and future of component-based construction.

17/10/2023 by Woodea 0 Comments

Industrialized Low-Impact Construction: Madreselva Building

Comparative Analysis. 3 Cases in 3 Dimensions: Water, Waste, and Carbon

In an increasingly sustainability-conscious world, the construction of ecologically responsible buildings has become a priority, and the Madreselva building is a prominent example of this trend. As a fundamental part of our methodology, technical wood represents for Woodea a decisive step towards decarbonizing construction and our effective contribution to sustainability.

In this article, we will explore the results of a life cycle assessment (LCA) comparing three construction models identified as Madreselva, Woodea, and Traditional. The aim of this analysis is to evaluate the carbon footprint, water usage, and waste generation over the 50-year lifespan of this building.

Low-impact industrialized construction through the Madreselva building

The Madreselva building is a new residential construction project that stands out for its focus on sustainability. Located in Burjassot, Valencia, it is under construction during 2023/2024 and aims to achieve a valuable 4-leaf rating in the Green certificate granted by Green Building Council Spain (GBCE).

This project, designed by the architecture studio FVAI and promoted by Zubi Cities, differs from traditional construction through a combination of three materials: concrete for foundations and basement, and wood and metal structure. Functionally and design-wise, it also stands out thanks to its multiple common areas and interior garden spaces, as can be seen in the following video.

The central purpose of this analysis is to compare three structural construction systems (Madreselva, Woodea, and Traditional) based on three scenarios subjected to a Life Cycle Assessment (LCA) evaluating their carbon footprint, water consumption, and waste generation.

To ensure a fair comparison, the selected functional unit is the construction and use of a Build to Rent residential building with 14 units in Burjassot (Valencia) on 5 floors with a 4-leaf Green certification for 50 years. All three scenarios have the same fire protection, insulation, and energy consumption. The built area is 1,532 m2, excluding parking.

The LCA covers all stages, from raw materials to the end of the building’s life, including the transport and treatment of generated waste. This ensures a comprehensive assessment of the environmental impacts involved in each scenario.

etapas y alcance del estudio de construcción de edificios con madera

The study focuses on three key categories of environmental impact:

  • Climate Change: Construction and building use account for 40% of global CO2 emissions. This analysis evaluates the carbon footprint of the building’s entire life cycle, including carbon absorption from wood. Results are expressed in tons of CO2 equivalent (t CO2-eq).
  • Water Usage: Only the construction sector consumes 16% of the world’s water resources. This indicator in the report addresses water consumption, including evaporation, transpiration, and other factors. Water usage units are measured in cubic meters (m3).
  • Waste Generated: The volume of debris and waste generated by construction is equivalent to one out of every three of those buildings. The report considers all materials leaving the analyzed system, including construction waste and building materials at the end of its lifespan. Results are expressed in tons (t).

Comparative analysis of three construction scenarios

The three construction scenarios under analysis share common functional features such as energy consumption and spatial arrangement. Their functional characteristics are, therefore, the same, with the only variations occurring in the materials of the structure, foundation sizing, and concrete bricks in the facade.

Evaluation of results

Carbon footprint in production and construction phase

The Madreselva building and the Woodea model strongly demonstrate their commitment to sustainability by significantly reducing the carbon footprint in the production and construction phases compared to the Traditional model. The current climate crisis has increased the relevance of this stage, as adopting this construction system could imply a significant reduction in emissions.

Madreselva reduces the carbon footprint by an astonishing 58% in these phases, while the Woodea scenario surpasses it with an even greater reduction of 80%. These figures are 43% and 59%, respectively, over the entire life cycle.


These figures are remarkable and clearly demonstrate the positive impact of using wood as a construction material instead of other traditional materials.

Waste generated on site (t)

Both Madreselva and Woodea demonstrate their efficiency by requiring fewer materials in construction (~2,700 t vs. ~4,000 t), thereby generating less on-site waste. Additionally, wood and steel used in these models are highly recyclable, promoting a circular economy.

Woodea reduces generated waste by 31%, and Madreselva does so by 10% compared to the Traditional model.

These results underline the contribution of building with wood to waste reduction and responsible resource use.

Water consumption for each scenario and by phase (m3)

In water consumption reduction, both Madreselva and Woodea outperform the Traditional scenario, highlighting again the efficiency caused by the selection of construction materials.

Woodea and Madreselva would reduce water consumption in this phase by 36% and 34%, respectively, compared to the Traditional model, with the reason being the impact of increased concrete usage.


The choice of more sustainable materials and construction methods translates into more efficient water use, a valuable resource.

Evaluation of Impacts

Impact on costs of industrialized construction with wood

Although there may be an initial 10% cost overrun in direct costs by opting for wood structures, this over cost significantly reduces due to reductions in construction timelines and other factors.

The final over cost ranges between 3% and 4%, including reductions in indirect costs and margins for builders and developers.


These data suggest that, despite starting with a slight cost increase, choosing wood as a structural material can result in a profitable long-term investment.

Impact of wood structure on housing prices

Since construction costs represent approximately half of the final selling price of a home, the additional cost of a wood structure results in an increase in the selling price, ranging between 1.5% and 2%.

This translates to an increase of between 3,000 and 4,000 euros in a home with a price of 200,000 euros.


While there is a slight price increase, it can be considered a reasonable investment in terms of sustainability and long-term benefits.

Advantages of building with wood for the developer and society

Choosing wood construction not only has environmental advantages but also aligns with current trends in the real estate market.

Promoting buildings with wood structure can be attractive to climate-conscious and sustainability-aware investors. Additionally, developers adopting more sustainable approaches can stand out in a competitive market and attract a clientele that values a more ecological and communal lifestyle.

Conclusions of the analysis

The life cycle analysis conducted on the Madreselva building provides valuable data on the environmental impacts of different construction models. As society seeks to build more sustainably, it is evident that the choice of materials and construction methods plays a critical role in reducing the environmental footprint.

The Madreselva scenario stands out for its balanced approach in wood and steel, contributing to a lower carbon footprint compared to the Traditional scenario.

On the other hand, the Woodea scenario, primarily built in wood, shows significant potential to reduce environmental impact, especially in terms of water usage and waste generation.

In summary, this analysis demonstrates that sustainable construction is possible, and the choice of materials and construction methods can make a significant difference in reducing environmental impacts.

The Madreselva building, with its focus on wood and sustainability, represents a significant step towards a more ecological future in residential construction.

Access the complete report through the following link!

Low-Impact Industrialized Construction

Comparative Analysis. 3 Cases in 3 Dimensions: Water, Waste, and Carbon

26/09/2023 by Woodea 0 Comments

Woodea Presents Its Latest Report at The District: Industrialized Low-Impact Construction

Woodea presents “Low-Impact Industrialized Construction.”, a study that reveals that a building with a technical wood structure is more cost-effective and reduces carbon emissions, waste, and water consumption.

20/07/2023 by Woodea 0 Comments

Building with FSC® Certified Wood: A Commitment to Sustainability

In the construction industry, it is crucial to adopt practices that are environmentally friendly and promote sustainability. For this reason, selecting high-quality materials that contribute to a positive impact on the environment and the preservation of our natural resources is a key factor at Woodea.

Choosing wood as one of our main construction materials is one of the pillars of our methodology; therefore, in this article, we will explore the benefits of building with wood and why selecting Forest Stewardship Council (FSC) certified wood is crucial to ensuring sustainability and the quality of the final project.

What is FSC Certified Wood?

The Forest Stewardship Council (FSC) is an international non-profit organization that promotes environmentally responsible, socially beneficial, and economically viable forest management worldwide.

FSC Forest Management standards ensure zero deforestation, biodiversity protection, workers’ rights, and respect for the interests of local communities.

Certified FSC wood comes from responsibly managed and controlled sources, taking into account environmental, social, and economic aspects. By choosing FSC certified wood, we are reaffirming our commitment to sustainability and supporting forest protection.

Benefits of Building with FSC Certified Wood

In addition to the numerous benefits of building with wood discussed in previous blog posts like “Building Skyscrapers with Wood”, FSC certification adds other advantages related to forest protection and the guarantee and traceability of the entire process. This is reflected in the organization’s video ” Building with FSC Wood: Comfortable and Very Safe“:

The foreseeable increase in wood for construction purposes demands a commitment to the resource’s long-term availability and the protection of forests, their ecosystems, and the biodiversity they harbor. Ensuring sustainable traceability is an essential requirement that we must consider.

We could summarize in three key reasons why opting for a sustainable material like FSC certified wood is crucial:

1. Environmental Sustainability

As a sustainable construction company, at Woodea, we strive to analyze and minimize our environmental impact on each of our projects. FSC certified wood is an option that aligns with our values, as it comes from responsibly managed forests and controlled sources.

FSC certified wood comes from responsibly managed and sustainable forests and controlled sources. This means that principles of biodiversity conservation, soil and water protection are respected, and indiscriminate deforestation is avoided. By choosing FSC certified wood, we contribute to forest preservation and reduce the environmental footprint.

2. Climate Change Mitigation

Forests play a crucial role in mitigating climate change by acting as carbon sinks. Choosing FSC certified wood over other materials promotes sustainable forest management and ensures forest regeneration, contributing to carbon capture and reducing greenhouse gas emissions.

3. Social and Economic Responsibility

Generating a positive impact on local communities and the economy is another of our great motivations. By choosing FSC certified wood, we support responsible forest management and promote the well-being of communities dependent on them. FSC certification ensures that the rights of forest workers are respected and that a safe and fair working environment is promoted. Choosing FSC certified wood, we are building a sustainable future and contributing to the rural economic development of regions where certified forests are located, helping forest owners to continue managing their forests responsibly.


By choosing FSC certified wood, we ensure that our constructions are environmentally friendly while contributing to the protection and maintenance of forests and the well-being of local communities. We promote responsible forest management and become part of the solution.

If you are interested in delving deeper into FSC certified wood, forestry, biodiversity, regeneration, and other key aspects of forest management, we invite you to listen to our Wood Idea Podcast where Octavi Uyà, CEO of Woodea, and Gonzalo Anguita, Executive Director of FSC and a regular advisor to Woodea, discuss these topics.

20/06/2023 by Woodea 0 Comments

Passivhaus: The Path to Sustainability and Energy Savings in Construction

The value proposition of Passivhaus homes lies in creating highly efficient spaces that require minimal energy for operation, thereby reducing carbon emissions associated with building use.

24/04/2023 by Woodea 0 Comments

Sustainable Construction, Beyond a Trend: Benefits and Opportunities to Save Our Planet

In recent years, sustainable construction has evolved significantly, becoming a priority for the construction sector to address the challenges of climate change and the need to move towards a more sustainable world.

02/03/2023 by Woodea 0 Comments

Building the Future: How BIM and Digitalization Are Transforming the Construction Industry

Building Information Modeling (BIM) is revolutionizing construction by digitizing the entire building lifecycle, from design to maintenance.

07/02/2023 by Woodea 0 Comments

Can the skyline of New York and other major cities change in the coming years?

… o cómo el cuento de los tres cerditos podría cambiar para siempre.

Parte 3

Puedes leer la Parte 1 y la Parte 2 de esta cadena de posts sobre construcción industrializada en madera.

“Los rascacielos de vidrio y acero que tanto han contribuido al calentamiento global ya no tienen lugar en nuestra ciudad ni en nuestra Tierra”.

Esta fue la sentencia promulgada por Bill de Blasio, alcalde de Nueva York en julio de 2019, y publicada por el NY Times. Si bien esto no se correspondió con políticas municipales tan agresivas como sus palabras, marca una tendencia mundial al respecto. 

Actualmente ya existe un consenso generalizado sobre los beneficios que genera la construcción de edificios en madera técnica y es por ello que están proliferando en todo el mundo nuevos proyectos con una fuerte impronta medioambiental que se suman a esta nueva manera de pensar, construir y vivir en estos edificios.

Entre los numerosos proyectos que han sido ejecutados recientemente podemos destacar el estudio de arquitectura de Londres, Waugh Thistleton, pionero en utilizar CLT para construir un edificio de varios pisos. Hasta 2009 el CLT solo se había empleado para “casas bonitas y simples de dos pisos” asegura A. Waugh. En cambio, ahora irrumpen con un bloque de apartamentos de nueve pisos con revestimiento gris denominado Murray Grove, el primer proyecto de edificio de viviendas urbanas altas construido completamente con madera maciza prefabricada. Desde los muros de carga y los forjados del piso hasta los núcleos de escaleras y ascensores.

El mismo estudio trabaja en el edificio de viviendas más grande del mundo, Dalston Works

Entregado en 18 meses y completado en 2017, el conjunto de 10 pisos de altura, con sus 121 unidades realizadas completamente en CLT, aborda la doble problemática de la densificación de Londres y el impacto ambiental de las construcciones.

Situado en un sitio abandonado, las diferentes alturas de los techos y la fachada de ladrillos se integran perfectamente con las viviendas vecinas de estilo victoriano y eduardiano.

La eficiencia y el bajo peso del sistema constructivo posibilitó aumentar el número de unidades en un 25%. El bajo peso propio de la estructura de madera de la propuesta de 155.000 m2 permitió un resultado de altura mucho mayor de lo que hubiera sido factible con métodos tradicionales.

Junto a estos dos ejemplos, partiendo del modelo experimental  “tall wood” generosamente compartido como Creative Common por Michael Green y sus propuestas iniciales PMX35 (35 pisos) y adaptaciones posteriores para zona sísmicas PMX 15 (15 pisos) media altura, se han desarrollado en diferentes lugares del mundo ejemplos de cómo ejecutar edificios de baja huella de carbono.

En EEUU y Canadá, cuya limitación y tradición constructiva de edificios de más de 10 pisos condiciona el crecimiento, se está produciendo un cambio normativo que lo impulsa. Mientras, en Europa, donde los edificios alcanzan en su mayoría hasta seis pisos, se están incorporando con mayor fluidez. Como muestra de esto existen proyectos dentro de las iniciativas “verdes” europeas que tienen como objetivo realizar tres prototipos para una total evaluación del modelo y poder replicar los conocimientos.

Los cambios normativos, como los 14 cambios al Código Internacional de la Construcción que aumentan la altura permitida de la construcción con madera maciza a 80 metros, políticas gubernamentales que buscan promover el diseño con madera como el Programa Green Construction Through Wood “GC Wood” que proporciona financiación para proyectos de uso intensivo de madera o que utilizan productos y sistemas de madera innovadores en Canadá, o la iniciativa Wood4Bauhaus en Europa promoviendo como principal arma contra el cambio climático las construcciones en madera, han servido como catalizadores para fomentar la innovación en este campo.

Ejemplos de edificios que ya están cambiando el skyline en todo el mundo

UPM, una empresa de la industria forestal finlandesa, publicó una infografía diseñada para explicar y difundir el importante crecimiento que está experimentando la madera en masa como material de construcción sostenible para edificios en todo el mundo.

Menciona como ventajas competitivas su baja huella de carbono, su durabilidad sísmica, su facilidad de uso y los beneficios de rendimiento con respecto a la seguridad contra incendios y aislamiento acústico como ventajas comparativas principales y presenta una pequeña lista de los edificios de madera en masa más altos y emblemáticos  del mundo.


Brumunddal, Noruega, 18 pisos, 58 m. Finalizado en marzo de 2019.

Edificio emblemático,  no solo por la forma en que destaca en la orilla del lago más grande de Noruega, el lago Mjøsa, sino también como símbolo del “cambio verde”. Mjøstårnet demuestra que los edificios altos se pueden construir utilizando recursos y proveedores locales y materiales de madera sostenibles.

Mjøstårnet está ratificado como el edificio de madera más alto del mundo por el Consejo de Edificios Altos y Hábitat Urbano (CTBUH) así como por Guinness World Records. La torre también ha recibido numerosos premios y reconocimientos como los premios de diseño de Nueva York, los premios Norwegian Tech y el premio a la excelencia de CTBUH.

Brock Commons Tallwood House

Campus de Point Gray de la Universidad de British Columbia en Canadá. 18 pisos, 53 mts, finalizado en Julio de 2017

Construido a través de la Iniciativa de demostración de edificios de madera alta (TWBDI) dentro del programa Green Construction Through Wood (GCWood).

Antes de levantar el edificio, se construyó una maqueta de dos pisos de 8 por 12 metros en el sitio para probar las conexiones de madera a madera y la estabilidad de la estructura.

El ensamblaje final del edificio se realizó desde noviembre de 2015 a agosto de 2016. La estructura y la fachada fue completada por un equipo de trabajo de nueve personas en 57 días, a razón de 2 pisos por semana. 

El edificio estaba sujeto al Código de Construcción de Columbia Británica de 2012, que limita los edificios de madera a seis pisos, por lo que se requirió una aprobación especial, así como dos revisiones una estructural y otra sísmica.

Penttilänkulma, Lighthouse Joensuu

Joensuu, Finlandia, 14 pisos, 48 m. Finalizado en 2019.

Con una altura cercana a los 50 metros, el edificio Lighthouse Joensuu en el este de Finlandia es un edificio pionero en el desarrollo de la construcción de rascacielos de madera. 

Construido con productos de madera maciza, el Lighthouse Joensuu de 14 pisos es el edificio de madera de gran altura más alto de Finlandia. Es un excelente ejemplo finlandés de cómo se pueden utilizar productos de madera para construir edificios altos, impresionantes y sostenibles.

Alberga 117 apartamentos para estudiantes y está construido utilizando paneles de madera laminada (LVL) y madera contralaminada (CLT). Se suministraron más de 2000 m3 de madera maciza para su construcción.

La cantidad de carbono secuestrado es igual a las emisiones anuales de dióxido de carbono de alrededor de 700 automóviles.

Completado según lo programado, cada piso de madera maciza tardó menos de dos semanas en construirse. Los paneles llegaron a pie de obra donde se agregaron las instalaciones y las carpinterías en una carpa instalada a tal efecto.


Bergen Norway. 14 pisos, 49 m. Finalizado en 2016.

Proyecto multifamiliar de 62 apartamentos de entramado de madera a la vanguardia del desarrollo de viviendas para el futuro, con un fuerte enfoque en el consumo de energía, desarrollo sostenible y espacios al aire libre comunes.

Se consideraron diversos sistemas para edificios de madera de gran altura, incluyendo el uso de madera sólida laminada cruzada (CLT) llegando a la conclusión de que la combinación de módulos prefabricados de construcción con una estructura de madera laminada era la mejor manera de llevar a cabo con éxito su visión. La estructura comprende una mezcla de madera laminada cruzada y madera laminada (glulam) con basamento de hormigón armado.

La torre está formada por una estructura de madera laminada de carga y pisos modulares prefabricados hecha en madera de ingeniería utilizando únicamente madera noruega. 

Todas las principales estructuras de soporte de carga son de madera. Además, dos cubiertas interiores así como la cubierta superior están hechos de cemento. 

Los módulos de apartamentos del edificio han sido diseñados para cumplir con el estándar Passivhaus de sostenibilidad y se han construido en una fábrica en Estonia para ser enviados posteriormente a Bergen. A pesar de un costo inicial algo mayor que la de una obra de acero y/o estructura de hormigón, el tiempo de ejecución fue significativamente más corto: cuatro plantas de módulos en sólo tres días.

El edificio utilizó 9.500 metros cúbicos de madera en sus estructuras portantes que evitaron la emisión de alrededor de 18.000 toneladas de CO2. Esto es equivalente a evitar la conducción de 105 millones de kilómetros en un automóvil de gasolina. En general, el edificio evita más de 21.000 toneladas de emisiones de CO2.

25 King St

Brisbane. Australia. 10 pisos 52 m. Finalizado en 2018.

Ubicado en el corazón de Showgrounds, Brisbane, representa un importante  logro en ingeniería de la madera. 

Un sistema simple de 6×8 metros de vigas y columnas laminadas (Glulam) soporta pisos de madera laminada cruzada (CLT) con paredes de núcleo de madera. Los principales servicios están conectados en red en zonas especialmente diseñadas para que cada piso pueda acomodar fácilmente diferentes inquilinos.

Los principios de diseño biofílico guiaron la paleta de madera y materiales naturales del edificio, así como su distribución. Los pisos de las oficinas brillan con la calidez de las columnas de madera, las vigas y el piso. El uso de madera natural, en lugar de hormigón, acero y placas de yeso, conecta mejor a los ocupantes con la naturaleza, fomentando un lugar de trabajo más feliz y saludable. La cuadrícula de columnas de 6×8 crea una escala más íntima en los pisos que hacen que la escala de los pisos resulte más manejable, mejorando la experiencia diaria del espacio.

Pretende expresar la sostenibilidad y la ingeniería, al tiempo que proporcionar un lugar de trabajo creativo y colaborativo que mejore la salud y el bienestar de los ocupantes.

Este proyecto se construyó para demostrar a la industria que se pueden lograr soluciones de desempeño para esta escala de edificios para brindar un desarrollo altamente sostenible que sea bajo en carbono, bajo desperdicio y altamente eficiente en energía.

Además de los ejemplos mostrados en la infografía y los dos (de los muchos) construidos por el estudio Londinense Waugh- Thistleton, no podemos dejar de mencionar al Forté building: un bloque de apartamentos de 10 pisos (32,2 m) considerado el primer edificio en Australia hecho con madera laminada cruzada (CLT). 

La particularidad de este edificio es que los 759 paneles de CLT de abeto europeo (485Tn) cultivado y cosechado en Austria se enviaron a Australia en 25 contenedores, como un mueble de paquete plano, con sus 500 soportes angulares y los 34.550 tornillos necesarios para su montaje.

Tall Wood

Los “tall wood” son edificios de gran altura ejecutados en madera, de más de 14 pisos o 50 metros de altura. Fueron definidos como tal por el Council on Tall Buildings and Urban Habitat (CTBUH) y en los últimos seis años se han construido más de 44 edificios bajo este concepto. Se trata de construcciones emblemáticas entre las que podemos destacar la próxima torre residencial HAUT de 73 metros de Team V Architectuur o los edificios propuestos por Michael Green Architecture y T3 de DLR Group Ho Ho Wien. 

No sólo en América del Norte y Europa se puede ver aplicada esta técnica de construcción de baja huella de carbono utilizando la madera técnica como principal herramienta. El estudio del arquitecto con sede en Alemania, OMT Architects, ha diseñado la torre de madera más alta de África en la ciudad de Zanzíbar, Tanzania, denominada Burj Zanzibar.

Se trata de una torre que se elevará hasta 28 pisos y alcanzará la altura de 96 metros para alojar 266 apartamentos. Esta torre de uso mixto (viviendas con equipamiento recreativo, oficinas y salas de conferencia) pretende utilizar la madera local y la silvicultura responsable para su construcción y transformarse como un polo de atracción para empresas tecnológicas en el Africa Oriental.

Edificio en madera mas alto de africa

Fuente Archdaily Foto OMT arquitectos

Y si avanzamos en el futuro, los verdaderos rascacielos ya están apareciendo. Proyectos que a ojos del presente se ven como experimentales están siendo diseñados actualmente.

Ubicado en Barbican Estate, se convertirá en la segunda torre más alta de Londres después de The Shard y el edificio en madera mas alto del mundo. Pensado para densificar la ciudad de Londres y dar soluciones sostenibles al problema de la vivienda en la ciudad. 

Un  rascacielos de 80 pisos, 300 metros de altura, con 1.000 apartamentos repartidos en 90.000m2, diseñado por investigadores del departamento de Arquitectura de la Universidad de Cambridge junto con arquitectos e ingenieros.

Y para finalizar, ponemos el foco en el año 2041 cuando se preve la finalización del denominado W350 en Tokio, Japón, propiedad del fabricante de productos de madera nipón Sumitomo Forestry que planea construir un rascacielos de madera de 350 metros de altura en el centro de la capital. 

La estructura del edificio de 70 plantas está compuesta por un 90% de madera y en el resto se utilizarán tirantes de acero para mejorar la resistencia al viento y a los terremotos debido a la alta actividad sísmica de la zona.

La torre, cubierta por distintos tipos de plantas que treparán rodeándola, pretende transformarse en un icono verde en la ciudad.


Descubre por qué la construcción en madera es un factor clave dentro del Woodea Production System

18/01/2023 by Woodea 0 Comments

Why build skyscrapers with wood?

… or how the tale of the three little pigs conditions the consolidation of new technologies.

Part 2

In our previous post, we presented the 21st century as [the century of wood in construction](https://woodea.es/blog/siglo-de-la-madera-en-construccion/), and how the tale of the three little pigs has impacted the planet. Now, continuing with the analogy of the popular children’s story, we will try to explain the effect that these stories, passed down from generation to generation, have had on the perception of construction and buildings.

In the cultural imagination shaped by this story, wooden buildings (and those made of straw) are considered fragile. The wolf could blow them down with just a couple of breaths. In the popular imagination, the pigs who opt for wooden or other bio-material buildings (straw) are seen as less cautious and less hardworking.

From this preliminary idea, one could interpret that life rewards only those who are hardworking and cautious with a durable and unalterable shelter to protect themselves from the wolf.

Conclusion: successful people have brick houses.

Lobo feroz soplando casa

If we continue with the analogy, the houses that protect us from the elements and provide security against the wolf are made of bricks.

But time has passed, and things have changed since this Disney film from 1933. Bricks gave way to iron in the 19th century and to steel and concrete as the star material in the 20th century, constructing thousands of homes that housed hardworking and successful pigs.

However, as the world’s population increased and people left their homes in the countryside to work in the city, there arose a growing need for transportation to get to work. And that’s when a new wolf appeared: the climate crisis, accompanied by a crisis in the quantity and quality of housing.

How to face this new crisis?

On the one hand, the shortage of housing, and on the other hand, the negative impact of traditional construction methods on the environment. How can we continue building without harming our planet?

The Global Alliance for Buildings and Construction (GlobalABC) UN Environment Program estimates that the construction of brick, concrete, and steel houses generates up to 8% of total greenhouse gases. The use and maintenance of buildings themselves are responsible, on the other hand, for 47% of carbon emissions.

And lastly, it is evident that a construction system based on extractive methods of resources that will one day be depleted is unsustainable. Water and sand are the most used raw materials on the planet. We understand the water crisis, but the sand crisis has not yet reached the general public.

Estatus global para edificios y construcciones

To look to the future with optimism, we must seek alternative methods that provide sustainable and affordable housing and that do not affect, or affect as little as possible, the environment.

It is, therefore, necessary to transition to an industry that reduces its emissions not only in the use phase but also in the production phase of materials and components. It’s about moving to an industry that does not deplete natural resources but regenerates them.

Visionary architect Michael Green, back in July 2013, warned of this clash of interests with a very graphic image.

In an inspiring TED talk for those who see the urgent need to build differently, he questions:

How can we meet these demands with a material that allows us to build homes without affecting the environment? And he found it right outside his window, in his home in Canada: WOOD, or rather “woods” since there are infinite varieties for different uses.

And he states…

“For me as an architect, wood is a great material, the only material with which I can build that grows with the energy of the sun.”

And he provides reasoning to describe why wood is not only an excellent material for construction but also why building with wood is beneficial for the planet:

“When a tree grows in the forest, it releases oxygen, absorbs carbon dioxide, and then, when it dies, falls to the ground and returns carbon dioxide to the atmosphere or soil. If it burns in a forest fire, the carbon also returns to the atmosphere.But if that wood is taken and used in construction or in a piece of furniture or in that wooden toy, with its incredible ability to store carbon, it provides us with a great retention of this element.

One cubic meter of wood stores a ton of carbon dioxide. Our two solutions to protect the climate are obviously to reduce emissions and find a carbon storage system.

To address these dilemmas and propose solutions, there are pioneers—those who see a little further, those who prioritize the common interest over the individual.

“Wood is the only material I use that fulfills these two functions. We understand that it is ethical for food to grow on Earth, now we need materials to build our homes to grow on Earth in this century.”

When Michael Green talks about “wood,” he is not referring to what the popular imagination recognizes as “wooden houses.” Going back to the three little pigs, the house presented in the film is not a fragile wooden construction but one related to “technical wood,” for many, the material of the 21st century.

The raw material for making wooden buildings

21st-century wood is a technological development that we call “technical wood.” It is not new, as in its modern form, it has been around for over 30 years, and laminated wood is an invention of the 19th century. It has very good mechanical and physical properties, which, at equal weight, have greater strength than steel and concrete, much more malleable, with much more predictability, and better fire resistance in case of fire.

The needs, priorities, and materials to be applied for this new era are radically different.

Although construction techniques using straw, bamboo, or even earth are being applied in single-family homes, to have a real impact on the environment, it must be used massively and preferably in urban environments. This is where, in this new scenario, the material par excellence is CLT, which stands for Cross Laminated Timber.

To create this new technological material, boards are stacked side by side in layers and joined on their short sides by joints called “fingers,” forming sheets glued together with a non-toxic and ecological adhesive. Subsequently, for greater strength, they are hydraulically pressed to create “master panels” that can reach dimensions of 3.5m x 16m. This is a blank canvas where the architect can “paint” their project.

If the top sheet is perpendicular to the previous one, forming a cross (cross), it is called CLT and is used for slabs and structural panels, while if they are aligned, they are known as GLT and are used for pillars and beams.

Therefore, adopting this new construction method should be an imperative or, rather, an urgency to mitigate the impacts of the climate crisis.

It has been proven that buildings made of technical wood (mass timber) reduce greenhouse gas emissions, fossil fuel consumption, and even, through sustainable use of the wood’s origin, protect forests and enable the development of rural areas, favoring their repopulation.


Carbon footprint and its relationship with wood. The new economic variable.

“The production of one ton of wood for construction requires a total of 5 times less energy than needed to manufacture one ton of reinforced concrete, 24 times less than one ton of steel, and 26 times less than that of one ton of aluminum.” Source: Council C.W (2004) Energy and the Environment in residential construction. Sustainable Building Series No. 1 pp1-16

In this new era, a new variable logically appears: homes should not only shelter us from the wolf but should not harm our “big house,” the planet.

In various scientific meetings and summits, a limit to global warming is established, and CO2 is recognized as the gas that contributes most to global warming. Reducing it is decided as the main strategy to achieve the goal of maximum temperature increases to 1.5º by 2050.

In this context, the EU establishes its climate change mitigation strategy through the reduction of emissions of its main contributor, the “carbon footprint.”

This concept, coined in the 1990s by Canadian ecologist William Rees and Swiss regional planner Mathis Wackernagel at the University of British Columbia, is expressed as a weight measure. An example: tons of CO2 or CO2 equivalent per year, measuring the impact an activity has on the environment.

What is the relationship between trees, wood, and carbon?

If we remove all the moisture from a trunk, 70% of its structure is carbon. That’s why a tree or a group of them, a forest, is a carbon deposit, and even cut and placed in a construction, it keeps it in its mass, as can be seen in the following video “Follow the tree.”

Wood for Good - The Story of the Tree

So far, the construction industry has not been obliged to address the inefficiencies of its processes regarding the carbon footprint. It is located in what is called “diffuse sectors.”

This will change in the future due to the high impact of constructions throughout their life cycle, and this activity must be framed in the mandatory emissions market where each ton of CO2 is measured in carbon bonds or CERs (Emission Reduction Certificate).

This predictable change will produce a new variable in construction budgets. In addition, we will witness changes in regulations that are already applied in some European cities such as Bordeaux and are already being studied in some Spanish cities such as Valencia and Lugo, moving from thermal regulations to environmental regulations, directly affecting the choice of materials and construction systems.

As architect David Sebastian mentions in his book “Building in Height in Wood.”

…a new paradigm is needed where profitability and sustainability are linked. In other words, a buildability inversely proportional to emissions and resource consumption. A model that can densify cities and allow their progress but limit their growth and excessive occupation of the territory at the same time. A model where poor resource management is penalized mechanically, and conversely, responsible resource management is rewarded.”

And he represents this position graphically.

With all these backgrounds and in this context of the climate emergency in which we are immersed, it is necessary to think about different strategies to reduce the carbon footprint.

“If wood did not exist, we would have to invent it,” says our CEO Octavi Uy. It is a “supermaterial that no modern alloy has managed to beat,” explains this article and many assertions from leading universities, architects, and scientists.

With all this, we repeat, affirm, and share what architect Alex De Rijke says:

“The 19th century was the century of iron,

the 20th century was the century of concrete,

and the 21st century will be the century of technical wood.”

Discover why wooden construction is a key factor within the Woodea Production System

Building construction, wood framing structure at new property development site
20/12/2022 by Woodea 0 Comments

Woodea and the century of wood in construction.

…or how the tale of the three little pigs has impacted the planet

Part 1

The classic tale turned into a Disney movie in 1933 has created a misconception about the use of wood in construction, you know… “and he huffed and he puffed…

Established in the collective subconscious that houses built with wood are fragile, associated with people of low working capacity who must resort to others more cautious living in brick houses, the tale has defined constructions of masonry as “success,” and even more so, those of concrete, steel, and glass that allow mere mortals to be seen from the towers of triumph, whose ultimate representation is skyscrapers.

But the wolf changed, and today the wolf we should all fear is the environmental crisis and the health of the planet.

And wood changed; it went from being just “wood” to being “engineered wood,” a new way of using the material in construction with maximum efficiency and utilizing leftovers that had no value before.

Since the ’90s, terms like GLULAM and acronyms like DLT, NLT, and the most well-known CLT (Cross Laminated Timber) have emerged. CLT is nothing more than wooden boards assembled and glued along their short sides and turned and glued along their long sides, forming a continuous wooden panel that is glued and pressed with another panel in the other direction (at 90 degrees) in multiple odd layers of thicknesses up to 0.30m and sizes up to 16m x 3.5m wide.

Constructions made with this material could easily withstand the attacks of the 20th-century wolf (resistance and precariousness; and the blows of the wolf) and those of the 21st century (mainly environmental crises).

Even recognizing the benefits of engineered wood construction to tackle the bigger wolf, that of the 21st century, the environmental crisis, remnants of the 20th-century “three little pigs” persist—preconceptions that need to be changed based on information: fire, resistance, durability, deforestation, price…

Wood in construction: fire resistance

We could go into much detail about this, but currently, there are fire stations made of wood. Is that proof enough? But let’s delve a bit deeper.

Wood has the ability to burn with a very predictable behavior (0.7 mm/min), allowing for careful planning of structure dimensions against fire to ensure safety.

Furthermore, it has excellent resistance to fire penetration due to its low thermal conductivity and its ability to form a surface char layer (pyrolysis) that allows it to maintain its physical and mechanical properties for a longer time than steel and concrete structures.

There’s even another effect: the action of fire increases due to the dehumidification of the resistant capacity, as wood’s resistance is inversely proportional to moisture content.

How can a company like Woodea, born within Zubi Labs, whose goal is positive impact and sustainability, support deforestation? What about deforestation?

The wood we use in our constructions comes from certified forests. In these plantations, only those specimens “ordered” by a forest plan, planted 30, 50, 70, or 100 years ago for that purpose, are cut. Through responsible silviculture (forest cultivation), these plantations help regenerate forests, aiding in carbon sequestration.

There are two major global certification systems, PEFC (Programme for the Endorsement of Forest Certification) and FSC (Forest Stewardship Council), which oversee both forest utilization and the traceability of all their products. In some cases, they go further, ensuring respect for indigenous peoples, ethics, utilization, inclusion, etc. These seals can be found on almost all woods and paper packaging on the market.

Through responsible and well-managed silviculture, we protect the health of our forests, promoting population growth in rural areas and preventing depopulation while providing effective fire management.

Despite the increase in demand for wood in construction and other multiple uses, in most developed countries, more forest area is regenerated each year than disappears, either through planting or natural regeneration.*

Source: FAO Global Forest Resources Assessment 2020

Wood in construction: maintenance and durability

Now, there are much less violent wolves to deal with…

What about maintenance? Wood is a natural material, and in contrast to other artificial materials that hardly age, it changes its appearance over time. Still, we can use technological means available to delay this aging (heat treatments) or use it previously aged so that it does not change appearance.

And the durability of wood? There are current examples that demonstrate durability is not a problem for wood as a construction material. We can study the Hōryū-ji temple complex near the Japanese city of Nara with five stories built around 600 AD. Another 26 buildings in the complex were built before 800 AD.

Regarding strength, in the tale, if the wolf were an earthquake and the three housing options were subjected to the same stress, the ending would change. Surely in this case, the wooden house would be the safest option due to its greater ductility compared to brick and concrete.

This is because seismic forces are proportional to the weight of the building, and the weight of wood is substantially less than that of other materials (a wooden structure can weigh up to 5 times less than a concrete one). The second reason is that wood has a great elastic capacity; it can absorb significant deformations before failure.

These two elements converge to make engineered wood a highly recommended material for seismic areas.

If we continue presenting the virtues of construction with wood, a material that regenerates naturally 365 days a year, that creates value in sparsely populated areas, that is a “carbon jar,” that is malleable and resistant, precise, highly industrializable, with which new architectures can be built, creating sustainable cities with healthy buildings that provide well-being to their inhabitants and that, once its useful life is over, can be dismantled or partially reused or recycled, we would surely see the “practical pig” working in a nearby warehouse to assemble his wooden house long before the wolf arrives.

We cannot conclude this article in any other way than by joining the call to action of the European Bauhaus and the “Wood4 Bauhaus” movement:

Discover why wood construction is a key factor within the Woodea Production System